Islamic Mathematics

BY Ghayour Khan

Al-Khawrizmi

The Islamic Empire established across Persia, the Middle East, Central Asia, North Africa, Iberia, and in parts of India in the 8th century made significant contributions towards mathematics. Although most Islamic texts on mathematics were written in Arabic, most of them were not written by Arabs, since much like the status of Greek in the Hellenistic world, Arabic was used as the written language of non-Arab scholars throughout the Islamic world at the time. Persians contributed to the world of Mathematics alongside Arabs.

In the 9th century, the Persian mathematician Muḥammad ibn Mūsā al-Khwārizmī wrote several important books on the Hindu-Arabic numerals and on methods for solving equations. His book On the Calculation with Hindu Numerals, written about 825, along with the work of Al-Kindi, were instrumental in spreading Indian mathematics and Indian numerals to the West. The word algorithm is derived from the Latinization of his name, Algoritmi, and the word algebra from the title of one of his works, Al-Kitāb al-mukhtaṣar fī hīsāb al-ğabr wa’l-muqābala (The Compendious Book on Calculation by Completion and Balancing). He gave an exhaustive explanation for the algebraic solution of quadratic equations with positive roots,[107] and he was the first to teach algebra in an elementary form and for its own sake.[108] He also discussed the fundamental method of "reduction" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation. This is the operation which al-Khwārizmī originally described as al-jabr.[109] His algebra was also no longer concerned "with a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." He also studied an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."[110]
Further developments in algebra were made by Al-Karaji in his treatise al-Fakhri, where he extends the methodology to incorporate integer powers and integer roots of unknown quantities. Something close to a proof by mathematical induction appears in a book written by Al-Karaji around 1000 AD, who used it to prove the binomial theorem, Pascal's triangle, and the sum of integral cubes.[111] The historian of mathematics, F. Woepcke,[112] praised Al-Karaji for being "the first who introduced the theory of algebraic calculus." Also in the 10th century, Abul Wafa translated the works of Diophantus into Arabic. Ibn al-Haytham was the first mathematician to derive the formula for the sum of the fourth powers, using a method that is readily generalizable for determining the general formula for the sum of any integral powers. He performed an integration in order to find the volume of a paraboloid, and was able to generalize his result for the integrals of polynomials up to the fourth degree. He thus came close to finding a general formula for the integrals of polynomials, but he was not concerned with any polynomials higher than the fourth degree.[113]
In the late 11th century, Omar Khayyam wrote Discussions of the Difficulties in Euclid, a book about what he perceived as flaws in Euclid's Elements, especially the parallel postulate. He was also the first to find the general geometric solution to cubic equations. He was also very influential in calendar reform.[citation needed]
In the 13th century, Nasir al-Din Tusi (Nasireddin) made advances in spherical trigonometry. He also wrote influential work on Euclid's parallel postulate. In the 15th century, Ghiyath al-Kashi computed the value of π to the 16th decimal place. Kashi also had an algorithm for calculating nth roots, which was a special case of the methods given many centuries later by Ruffini and Horner.
Other achievements of Muslim mathematicians during this period include the addition of the decimal point notation to the Arabic numerals, the discovery of all the modern trigonometric functions besides the sine, al-Kindi's introduction of cryptanalysis and frequency analysis, the development of analytic geometry by Ibn al-Haytham, the beginning of algebraic geometry by Omar Khayyam and the development of an algebraic notation by al-Qalasādī.[114]
During the time of the Ottoman Empire and Safavid Empire from the 15th century, the development of Islamic mathematics became stagnant.

Abu Ja'far Muhammad ibn Musa Al-Khwarizmi


Born: about 780 in possibly Baghdad (now in Iraq)
Died: about 850


We know few details of Abu Ja'far Muhammad ibn Musa al-Khwarizmi's life. One unfortunate effect of this lack of knowledge seems to be the temptation to make guesses based on very little evidence. In [1] Toomer suggests that the name al-Khwarizmi may indicate that he came from Khwarizm south of the Aral Sea in central Asia. He then writes:-
But the historian al-Tabari gives him the additional epithet "al-Qutrubbulli", indicating that he came from Qutrubbull, a district between the Tigris and Euphrates not far from Baghdad, so perhaps his ancestors, rather than he himself, came from Khwarizm ... Another epithet given to him by al-Tabari, "al-Majusi", would seem to indicate that he was an adherent of the old Zoroastrian religion. ... the pious preface to al-Khwarizmi's "Algebra" shows that he was an orthodox Muslim, so Al-Tabari's epithet could mean no more than that his forebears, and perhaps he in his youth, had been Zoroastrians.
However, Rashed [7], put a rather different interpretation on the same words by Al-Tabari:-
... Al-Tabari's words should read: "Muhammad ibn Musa al-Khwarizmi and al-Majusi al-Qutrubbulli ...", (and that there are two people al-Khwarizmi and al-Majusi al-Qutrubbulli): the letter "wa" was omitted in the early copy. This would not be worth mentioning if a series of conclusions about al-Khwarizmi's personality, occasionally even the origins of his knowledge, had not been drawn. In his article ([1]) G J Toomer, with naive confidence, constructed an entire fantasy on the error which cannot be denied the merit of making amusing reading.
This is not the last disagreement that we shall meet in describing the life and work of al-Khwarizmi. However before we look at the few facts about his life that are known for certain, we should take a moment to set the scene for the cultural and scientific background in which al-Khwarizmi worked.
Harun al-Rashid became the fifth Caliph of the Abbasid dynasty on 14 September 786, about the time that al-Khwarizmi was born. Harun ruled, from his court in the capital city of Baghdad, over the Islam empire which stretched from the Mediterranean to India. He brought culture to his court and tried to establish the intellectual disciplines which at that time were not flourishing in the Arabic world. He had two sons, the eldest was al-Amin while the younger was al-Mamun. Harun died in 809 and there was an armed conflict between the brothers.
Al-Mamun won the armed struggle and al-Amin was defeated and killed in 813. Following this, al-Mamun became Caliph and ruled the empire from Baghdad. He continued the patronage of learning started by his father and founded an academy called the House of Wisdom where Greek philosophical and scientific works were translated. He also built up a library of manuscripts, the first major library to be set up since that at Alexandria, collecting important works from Byzantium. In addition to the House of Wisdom, al-Mamun set up observatories in which Muslim astronomers could build on the knowledge acquired by earlier peoples.
Al-Khwarizmi and his colleagues the Banu Musa were scholars at the House of Wisdom in Baghdad. Their tasks there involved the translation of Greek scientific manuscripts and they also studied, and wrote on, algebra, geometry and astronomy. Certainly al-Khwarizmi worked under the patronage of Al-Mamun and he dedicated two of his texts to the Caliph. These were his treatise on algebra and his treatise on astronomy. The algebra treatise Hisab al-jabr w'al-muqabala was the most famous and important of all of al-Khwarizmi's works. It is the title of this text that gives us the word "algebra" and, in a sense that we shall investigate more fully below, it is the first book to be written on algebra.
Rosen's translation of al-Khwarizmi's own words describing the purpose of the book tells us that al-Khwarizmi intended to teach [11] (see also [1]):-
... what is easiest and most useful in arithmetic, such as men constantly require in cases of inheritance, legacies, partition, lawsuits, and trade, and in all their dealings with one another, or where the measuring of lands, the digging of canals, geometrical computations, and other objects of various sorts and kinds are concerned.
This does not sound like the contents of an algebra text and indeed only the first part of the book is a discussion of what we would today recognise as algebra. However it is important to realise that the book was intended to be highly practical and that algebra was introduced to solve real life problems that were part of everyday life in the Islam empire at that time. Early in the book al-Khwarizmi describes the natural numbers in terms that are almost funny to us who are so familiar with the system, but it is important to understand the new depth of abstraction and understanding here [11]:-
When I consider what people generally want in calculating, I found that it always is a number. I also observed that every number is composed of units, and that any number may be divided into units. Moreover, I found that every number which may be expressed from one to ten, surpasses the preceding by one unit: afterwards the ten is doubled or tripled just as before the units were: thus arise twenty, thirty, etc. until a hundred: then the hundred is doubled and tripled in the same manner as the units and the tens, up to a thousand; ... so forth to the utmost limit of numeration.
Having introduced the natural numbers, al-Khwarizmi introduces the main topic of this first section of his book, namely the solution of equations. His equations are linear or quadratic and are composed of units, roots and squares. For example, to al-Khwarizmi a unit was a number, a root was x, and a square was x2. However, although we shall use the now familiar algebraic notation in this article to help the reader understand the notions, Al-Khwarizmi's mathematics is done entirely in words with no symbols being used.
He first reduces an equation (linear or quadratic) to one of six standard forms:
1. Squares equal to roots.
2. Squares equal to numbers.
3. Roots equal to numbers.
4. Squares and roots equal to numbers; e.g. x2 + 10 x = 39.
5. Squares and numbers equal to roots; e.g. x2 + 21 = 10 x.
6. Roots and numbers equal to squares; e.g. 3 x + 4 = x2.
The reduction is carried out using the two operations of al-jabr and al-muqabala. Here "al-jabr" means "completion" and is the process of removing negative terms from an equation. For example, using one of al-Khwarizmi's own examples, "al-jabr" transforms x2 = 40 x - 4 x2into 5 x2 = 40 x. The term "al-muqabala" means "balancing" and is the process of reducing positive terms of the same power when they occur on both sides of an equation. For example, two applications of "al-muqabala" reduces 50 + 3 x + x2 = 29 + 10 x to 21 + x2 = 7 x (one application to deal with the numbers and a second to deal with the roots).
Al-Khwarizmi then shows how to solve the six standard types of equations. He uses both algebraic methods of solution and geometric methods. For example to solve the equation x2 + 10 x = 39 he writes [11]:-
... a square and 10 roots are equal to 39 units. The question therefore in this type of equation is about as follows: what is the square which combined with ten of its roots will give a sum total of 39? The manner of solving this type of equation is to take one-half of the roots just mentioned. Now the roots in the problem before us are 10. Therefore take 5, which multiplied by itself gives 25, an amount which you add to 39 giving 64. Having taken then the square root of this which is 8, subtract from it half the roots, 5 leaving 3. The number three therefore represents one root of this square, which itself, of course is 9. Nine therefore gives the square.
The geometric proof by completing the square follows. Al-Khwarizmi starts with a square of side x, which therefore represents x2 (Figure 1). To the square we must add 10x and this is done by adding four rectangles each of breadth 10/4 and length x to the square (Figure 2). Figure 2 has area x2 + 10 xwhich is equal to 39. We now complete the square by adding the four little squares each of area 5/2 × 5/225/4. Hence the outside square in Fig 3 has area 4 × 25/4 + 39 = 25 + 39 = 64. The side of the square is therefore 8. But the side is of length 5/2 + x + 5/2so x + 5 = 8, giving x = 3.
These geometrical proofs are a matter of disagreement between experts. The question, which seems not to have an easy answer, is whether al-Khwarizmi was familiar with Euclid'sElements. We know that he could have been, perhaps it is even fair to say "should have been", familiar with Euclid's work. In al-Rashid's reign, while al-Khwarizmi was still young, al-Hajjaj had translated Euclid's Elements into Arabic and al-Hajjaj was one of al-Khwarizmi's colleagues in the House of Wisdom. This would support Toomer's comments in [1]:-
... in his introductory section al-Khwarizmi uses geometrical figures to explain equations, which surely argues for a familiarity with Book II of Euclid's "Elements".
Rashed [9] writes that al-Khwarizmi's:-
... treatment was very probably inspired by recent knowledge of the "Elements".
However, Gandz in [6] (see also [23]), argues for a very different view:-
Euclid's "Elements" in their spirit and letter are entirely unknown to [al-Khwarizmi]. Al-Khwarizmi has neither definitions, nor axioms, nor postulates, nor any demonstration of the Euclidean kind.
I [EFR] think that it is clear that whether or not al-Khwarizmi had studied Euclid's Elements,he was influenced by other geometrical works. As Parshall writes in [35]:-
... because his treatment of practical geometry so closely followed that of the Hebrew text, Mishnat ha Middot, which dated from around 150 AD, the evidence of Semitic ancestry exists.
Al-Khwarizmi continues his study of algebra in Hisab al-jabr w'al-muqabala by examining how the laws of arithmetic extend to an arithmetic for his algebraic objects. For example he shows how to multiply out expressions such as
(a + b x) (c + d x)
although again we should emphasise that al-Khwarizmi uses only words to describe his expressions, and no symbols are used. Rashed [9] sees a remarkable depth and novelty in these calculations by al-Khwarizmi which appear to us, when examined from a modern perspective, as relatively elementary. He writes [9]:-
Al-Khwarizmi's concept of algebra can now be grasped with greater precision: it concerns the theory of linear and quadratic equations with a single unknown, and the elementary arithmetic of relative binomials and trinomials. ... The solution had to be general and calculable at the same time and in a mathematical fashion, that is, geometrically founded. ... The restriction of degree, as well as that of the number of unsophisticated terms, is instantly explained. From its true emergence, algebra can be seen as a theory of equations solved by means of radicals, and of algebraic calculations on related expressions...
If this interpretation is correct, then al-Khwarizmi was as Sarton writes:-
... the greatest mathematician of the time, and if one takes all the circumstances into account, one of the greatest of all time....
Arabic/Islamic mathematicians in our archive in chronological order
790  al-Khwarizmi
800  Al-Jawhari
805  al-Kindi
808  Hunayn
810  Banu Musa, Ahmad
810  Banu Musa, al-Hasan
810  Banu Musa, Muhammad
820  Al-Mahani
826  Thabit
835  Ahmed
850  Abu Kamil
850  al-Battani
875  Al-Nayrizi
880  Sinan
900  Al-Khazin
908  Ibrahim
920  al-Uqlidisi
940  Abu'l-Wafa
940  Al-Khujandi
940  al-Quhi
945  al-Sijzi
950  Yunus
953  Al-Karaji
965  al-Haitam
970  Mansur
973  al-Biruni
980  al-Baghdadi
980  Avicenna
989  Al-Jayyani
1010  Al-Nasawi
1048  Khayyam
1100  Aflah
1130  al-Samawal
1135  al-Tusi, Sharaf
1201  al-Tusi, Nasir
1220  al-Maghribi
1250  al-Samarqandi
1256  al-Banna
1260  al-Farisi
1320  al-Khalili
1364  Qadi Zada
1390  al-Kashi
1393  Ulugh Beg
1400  al-Umawi
1412  al-Qalasadi